展商动态 » 【行业新闻】淀粉改性的100种方法,与PLA、PVA复合制备生物塑料

【行业新闻】淀粉改性的100种方法,与PLA、PVA复合制备生物塑料


图片





早期曾有研究者将淀粉一类可生物降解原料和塑料成分混合制备半生物降解塑料产品,这类产品只有淀粉成分能被降解,塑料成分不能被降解且难以回收。此类半生物降解塑料不能从根本上解决环境问题,已被淘汰。 


对淀粉进行物理或化学处理,改善其热塑加工性能,使其具有良好的可塑成膜性能,同时能在适当的环境中快速降解,可以真正实现完全生物降解。此外,将淀粉与聚乳酸(PLA)、明胶、纤维素、壳聚糖、乙酸纤维素、细菌纤维素等聚合物共混复合,可制作用于食品容器、包装材料的完全生物降解材料。


但淀粉基材料存在质脆、力学性能差、易吸水的问题,限制其实际应用。在淀粉基材料中添加改性增强材料,能有效提高材料的性能。


本文将对淀粉基生物降解塑料的研究现状进行综述。


01

淀粉的结构和性质


淀 粉 的 分 子 结 构 分 为 直 链 淀 粉 和 支 链 淀 粉。直链淀粉主要由脱水葡萄糖单元通过α-1, 4-糖苷键连接而成,含有少量由 1,6-糖苷键连接的分支。支链淀粉的主链由 α-1,4-糖苷键连接而成,支链由 α-1,6-糖苷键连接。天然淀粉一般由 70%~80% 支链淀粉和 20%~30% 直链淀粉组成。


图片


将淀粉在冷水中充分分散,升高温度,淀粉吸水膨胀转变为淀粉糊。淀粉糊在光滑平面上干燥,形成淀粉膜。这种淀粉膜力学性能差、韧性低,通过对淀粉改性处理和与增强剂共混制得力学性能良好的淀粉基薄膜,可作为淀粉基降解塑料使用。


02

淀粉基生物降解塑料


淀粉基生物降解塑料的设计思路往往是将淀粉进行改性处理改善其热塑成膜性能,或者将淀粉与其他成膜材料、增强剂材料共混制备生物降解塑料。


常见的淀粉基复合降解塑料将淀粉和合成高分子聚合物(如聚乙烯醇PVA、聚乳酸PLA等)、天然高分子聚合物(如植物纤维、淀粉颗粒、细菌纤维素、壳聚糖等)、其他添加材料(如黏土、石墨烯、滑石粉等)以及增塑剂共混复合,获得淀粉基复合降解塑料。


这些塑料均能实现完全生物降解, 可应用于包装材料、食品容器、一次性餐具、缓冲包材、儿童玩具等多种领域。


1.热塑改性淀粉基生物降解塑料

天然淀粉为天然的多羟基化合物,分子之间存在大量的氢键,这种分子间强的相互作用使其分解温度低于熔融温度,导致天然淀粉没有可加工性。 


在淀粉中加入小分子增塑剂,经过高温、高压和剪切作用能够使淀粉具有可加工性能,使天然淀粉变成热塑性淀粉。


制作热塑性淀粉的常用方法是将淀粉、甘油和水充分混合分散,在一定温度下搅拌一定时间,获得凝胶状态的热塑性淀粉。进一步添加增强剂,对热塑性淀粉材料的性能进行改善。


为获得容易被生物降解、可取代石油衍生物的包装材料,研究者以不同植物来源的淀粉为原料,添加一定量的甘油,采用流延法制备了热塑性淀粉基薄膜。


图片


热塑改性后的淀粉具有大的淀粉结构域、良好的热稳定性能和抗吸水性,但膜的刚度低。为改善对热塑性淀粉膜的性能,他们在热塑性淀粉基质中加入纤维素纳米粒子,获得的膜在刚性、热稳定性、耐湿性等方面均有所提高。


利用甘油增塑改性玉米淀粉,然后将热塑改性淀粉和蜡质淀粉、纤维素纳米晶体复合,制备热塑性玉米淀粉基生物纳米复合材料。经复合后,材料的力学性能和透氧性提高,热稳定性降低。


从小麦秸秆中获取纳米纤维素, 将淀粉、甘油、纳米纤维素混合并持续加热搅拌, 获得黏稠的热塑性淀粉基复合物,并用流延法制作薄膜。相比于未复合纳米纤维素的薄膜,随着纳米纤维素含量的增加,复合薄膜的力学性能先增强后降低,这与纤维的团聚有关。


将工业玉米淀粉利用甘油热塑改性后,分别利用从剑麻、大麻中获得的纤维增强热塑玉米淀粉制备复合材料。发现剑麻和大麻纤维的掺入使热塑性玉米淀粉的玻璃化转变温度(Tg ) 升高,刚性增强,力学性能无显著改变。此外,向复合材料中添加天然乳胶,进行增塑改性,改性后复合材料的吸水性降低,材料的热稳定性和力学性能无明显影响。


以D-山梨醇作为淀粉的塑化剂, 在加热剪切的条件下对淀粉进行塑化改性。加入纤维素纳米纤维(CNF)对热塑改性的淀粉进行增强改性,发现 CNF 可改善热塑性淀粉的力学性能和湿敏性。CNF在挤出过程中聚集,而螺杆挤出技术需要分散更均匀的复合物才能得到均匀的材料。


热塑改性的淀粉基生物降解塑料克服了天然淀粉不具加工性的缺陷,但制备的产品存在韧性差、 耐压不高、易碎,特别是遇水后产品易软化,使产品的使用性能受到影响。仍需进一步调整改进产品配方和工艺,使产品具有更好的使用性能。


图片


2.淀粉/聚合物复合生物降解塑料


淀粉/PVA生物降解塑料

PVA和淀粉都是亲水高分子聚合物,二者水溶液可共混形成均质体系后制备淀粉/PVA 降解塑料。这是由于淀粉和PVA分子均含有大量的—OH 基团,在淀粉和 PVA 分子内和分子间可形成相互作用的氢键,从而大大提高两种组分的相容性。


将不同配比的淀粉/PVA 与增塑剂(甲酰胺和尿素)共混,随着淀粉含量的增加,共混物的断裂面呈现粗糙的表面,表明复合物为韧性断裂。随着淀粉的增加,平衡水吸收量减少;拉伸强度、断裂伸长率和杨氏模量降低。淀粉含量为 50% 时,共混膜的柔韧性仍较高,断裂伸长率大于1000%,拉伸强度为 9MPa,优于普通LDPE包装膜。


图片


PVA 溶液体系在成膜过程中发生相转化,可提高淀粉复合膜的性能。以淀粉/黏土为基体,采用挤出吹塑法制备淀粉/PVA/黏土纳米复合薄膜。随着PVA含量的增加,淀粉/ PVA/黏土膜的分子间相互作用得到增强,复合膜的力学性能和阻隔性能显著提高,透氧性降低。淀粉/聚乙烯醇/黏土纳米复合膜可用作高阻隔食品包装材料。


为改善淀粉/PVA 复合膜的性能,可在复合材料中添加不同的增强剂。以塑化淀粉(PS)、PVA为原料制备生物降解纳米复合材料,添加纤维素纳米晶体(CNC)对复合材料进行性能改性,所制备的纳米复合材料表现出良好的力学性能和阻隔性能。加入CNC后,PS/PVA薄膜的溶解性、吸水性、水蒸气透过性和断裂伸长率降低;接触角、极限抗拉强度、玻璃化转变温度(Tg )和熔点(Tm)均增加。


由于淀粉和 PVA 均具有水溶性,二者复合制备的降解塑料体系相容性好,产品性能稳定,力学性能接近甚至优于普通塑料。目前已有一些公司将淀粉/PVA复合生物降解塑料实现工业化生产,但是这类产品在存储、运输和使用的过程中需避免遇水,产品的疏水性还有待提高。


淀粉/PLA生物降解塑料

由于淀粉具有较好的亲水性而 PLA 具有高疏水性,使二者较难分散共混。研究者以热塑性淀粉和 PLA 为原料,通过压缩成型,在聚乳酸层中加入肉桂醛制备双层膜。研究发现与纯淀粉膜相比,低PLA添加量(膜厚的1/3左右)的双层膜的拉伸性能和水蒸气阻隔性能得到很大改善,膜保持高透明度,氧气透过率低。肉桂醛的加入使薄膜变薄,可保持良好的阻隔性能,但力学性能变差。


图片


利用挤出吹塑的方法制备组成为78%木薯淀粉和22%PLA的降解塑料,TPS/PLA复合降解塑料在分子组成和表面结构上的变化主要表现为崩裂、破碎和矿化三个阶段。破碎可能是由于非生物降解因素(温度升高)促进引发水解过程,并进一步生物降解为单体。


在聚乳酸转变乳酸或乙醇酸的过程中,通过C==O的振动来证明材料的降解,通过观察微生物作用产生的气孔来观察材料表面的变化。TPS/PLA 复合降解塑料在32天的生物降解率可达到65%。


将具有疏水性的PLA与淀粉复合制备生物降解材料,能够有效改善淀粉基降解塑料阻水性差的缺点。但二者较大的极性差异使其难以分散形成均一稳定的共混体系,淀粉的添加量和产品的稳定性受限。因此需要对淀粉进行表面改性处理或者添加助剂材料,提高组分之间的相容性和产品的稳定性。

来源:TK生物基材料




图片



现场照片


1

图片

3

图片

5

图片

2

图片

4

图片

6

图片
图片

7

图片

9

图片

11

图片

8

图片

10

图片

12

图片


  2022第六届中国天津塑料产业博览会(简称:North-plas北方塑料产业博览会)规模进一步扩大,参展门类进一步丰富,展览面积75000平米,展位2800个,届时将有1000余厂商参展,80000余客商参观。

   North-plas北方塑料产业博览会是以“创新、智能、绿色、环保、“互联网+”为主题,以塑料加工为核心,覆盖塑料设备、塑料模具、塑料原料、塑料制品、塑料包装、再生塑料等全产业链,展示国内外塑料新材料、新工艺、新装备、新产品,努力打造展示塑料工业先进技术平台、产业创新发展平台、经贸交流合作平台、信息服务平台,依托20万专业买家数据库,与20多个国家和地区保持长期的交流合作,打造具有时代特征的塑胶科技型品牌展会。

2022第六届中国天津塑料产业博览会将于2022年5月27-29日在国家会展中心(天津)举办,创新、智能、绿色、环保、“互联网+”与您相约,我们与您不见不散!


返回顶部